Literacy method of differences, partial fractions.	Research Research the use of the method of differences for summing convergent infinite series.		Memory If $u_r \equiv f(r+1) - f(r)$ then $\sum_{1}^{n} u_r = f(n+1) - f(1)$
Skills 1. By considering $f(r) - f(r + 1)$ where $f(r) = \frac{r+2}{r(r+1)}$ or otherwise, find the sum of the following series $\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)}$			Stretch 1) By considering the function $f(r) = r!$ Find the sum of the first $2n$ terms of the series $1 \times 1! + 2 \times 2! + 3 \times 3! + 4 \times 4!$ $+ \cdots$
2. Using the method of differences show that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+2)} = \frac{n}{n+2}$ 3. Use the identity $(r+1)^3 - r^3 \equiv 3r^2 + 3r + 1$ to find $\sum_{r=1}^{n} r(r+1)^2$ 4. Find $\sum_{r=1}^{n} (2r+1)$ using an appropriate function and the method of differences.		$_{1}r(r +$	2) Let $f(r) = \cos(2r\theta)$. Simplify f(r) - f(r + 1). Use your result to find the sum of the first n terms of the series $\sin(3\theta) + \sin(5\theta) + \sin(7\theta) + \cdots$