Method of Differences Homework

Literacy Research method of differences, Research the use of the method of differences for summing partial fractions.	Memory If $u_{r} \equiv f(r+1)-f(r)$ then $\sum_{1}^{n} u_{r}=f(n+1)-f(1)$
Skills 1. By considering $f(r)-f(r+1)$ where $f(r)=\frac{r+2}{r(r+1)}$ or otherwise, find the sum of the following series $\sum_{r=1}^{n} \frac{r+4}{r(r+1)(r+2)}$ 2. Using the method of differences show that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+2)}=\frac{n}{n+2}$ 3. Use the identity $(r+1)^{3}-r^{3} \equiv 3 r^{2}+3 r+1$ to find $\sum_{r=1}^{n} r(r+$ 1) 4. Find $\sum_{r=1}^{n}(2 r+1)$ using an appropriate function and the method of differences.	Stretch 1) By considering the function $f(r)=r$! Find the sum of the first $2 n$ terms of the series $\begin{aligned} 1 \times 1!+2 & \times 2!+3 \times 3!+4 \times 4! \\ & +\cdots \end{aligned}$ 2) Let $f(r)=\cos (2 r \theta)$. Simplify $f(r)-f(r+1)$. Use your result to find the sum of the first n terms of the series $\sin (3 \theta)+\sin (5 \theta)+\sin (7 \theta)+\cdots$

