AQA Level 2 Further Mathematics Warmup - Paper 12022

Differentiate $y=x(x+1)(x-3)$	Write the matrix representing a rotation through 270°, anticlockwise, about the origin.	The line $2 x+3 y=4$ intersects the x-axis at A and the y-axis at B . Find the length $A B$.	Find the second derivative of $y=3 x^{4}+2 x^{2}-10 x^{2}-7 x+5$	Write down the first 5 terms of the sequence defined by $u_{n}=\frac{3 n+2}{2 n}$ What is the limiting value of u_{n} as $n \rightarrow \infty$?
Find the centre and radius of the circle $x^{2}-4 x+y^{2}+6 y+4=0$		Find the solutions of $3 \sin ^{2}(x)+\cos ^{2}(x)+3 \sin (x)-3=0$ in the range $0^{\circ} \leq x \leq 360^{\circ}$	The coefficient of x^{2} in the expansion of $(3 x+a)^{5}$ is 720 . Find a.	Sketch, showing any intersections the curve $y=3 x^{2}+9 x-3$
A bird flies in a straight line at an angle of elevation 13° from the ground to a branch on a tree. Given that the branch is at a height of 15 m how far away is the tree.	The graph above shows a piece wise function $g(x)$. Define $g(x)$ stating the domain if each part, and also state the range of $g(x)$	Find the equation of the tangent to the circle $x^{2}-6 x+y^{2}-4 y=0$ at the point $(5,5)$. Find also where this tangent intersects the x-axis.	Sketch the graphs of $\begin{aligned} & y=\sin (x) \text { and } \\ & y=\tan (x) \text { for } \\ & 0^{\circ} \leq x \leq 360^{\circ} \end{aligned}$	Find the equation of the line perpendicular to $2 y=3 x+1$ which passes through (3,2).
Solve $813 x=27^{x^{2}+3}$	Rationalise the denominator of $\frac{2 \sqrt{3}}{3-2 \sqrt{5}}$	Given that $\left(\begin{array}{ll} 2 & 1 \\ b & 4 \end{array}\right)\left(\begin{array}{ll} a & 3 \\ 2 & 4 \end{array}\right)=\left(\begin{array}{ll} 4 & 10 \\ 8 & 16 \end{array}\right)$ find a and b.	Identify the turning point of the quadratic $y=2 x^{2}+5 x-7$	Find the stationary points of $y=\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x+5$
A triangle has side lengths 4 cm and 5 cm with an angle between these sides of 120°. Find the length of the remaining side.	Find the nth term of the sequence $3,14,29,48,71 \ldots$	The straight line $y=2 x-10$ intersects the circle $(x-2)^{2}+(y+1)^{2}=25$. Find the points of intersection.	The point $(2,1)$ is transformed by the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ to the point A. This is then transformed to the point B by the matrix $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$. Find B.	Factorise, fully, $\left\|x^{2}-4 x-9 y^{2}-36 y-32\right\|$

AQA Level 2 Further Mathematics Warmup - Paper 12022

$\frac{d y}{d x}=3 x^{2}-4 x-3$	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	$\sqrt{\frac{52}{9}}$	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4\left(9 x^{2}-4\right)$	$\begin{aligned} & \text { When } n=5, u_{n}=\frac{17}{10} \\ & \text { As } n \rightarrow \infty, u_{n} \rightarrow \frac{3}{2} \end{aligned}$
By completing the square the centre is $(2,-3)$ and the radius is 3 .		Use the identity $\begin{aligned} & \sin ^{2}(x)+\cos ^{2}(x)=1 \text { to } \\ & \text { find } \\ & (2 \sin (x)-1)(\sin (x)+2)=0 \\ & . \text { Hence } x=30^{\circ} \text { or } 150^{\circ} \end{aligned}$	$a=2$	
$\begin{gathered} x=\frac{20}{\tan \left(13^{\circ}\right)} \\ x=86.6 \mathrm{~m} \end{gathered}$	$g(x)=\left\{\begin{array}{cc} & -2 \leq x \leq 1 \\ x+1 & 1 \leq x \leq 4 \\ 5 & 4 \leq x \leq 6 \end{array}\right.$ Range of $g(x)$ is $2 \leq g(x) \leq 5$	Circle has centre $(3,2)$ and radius $\sqrt{13}$. Equation of tangent at $(5,5)$ is $2 x+3 y=25 .$ The tangent meets the x-axis at $(12.5,0)$.		$-2 x-3 y=-12$
$x=1$ and $x=3$	$\frac{-6 \sqrt{3}-4 \sqrt{5}}{11}$	This leads to two simultaneous equations $2 a+2=4$ and $b a+8=8$ which lead to $a=2$ and. $b=0$.	Completing the square we have $y=2\left(x+\frac{5}{4}\right)-\frac{81}{8}$ so the turning point has coordinate $\left(-\frac{5}{4},-\frac{81}{8}\right)$	Maximum at $\left(-2, \frac{37}{3}\right)$ and minimum at $\left(3,-\frac{17}{2}\right)$
$\sqrt{61}$	$2 n^{2}+5 n-4$	$(2,-6)$ and $(6,2)$	$B=\binom{6}{9}$	Factorising the x and y terms separately we have $(x-2)^{2}-3(y+2)^{2}$. Noticing this is a difference of two squares we obtain $(x-3 y-8)(x+3 y+4) \text { as }$ the factorised form.

