AQA Level 2 Further Mathematics Warmup - Paper 1 2022

Differentiate y = x(x + 1)(x - 3)	Write the matrix representing a rotation through 270°, anticlockwise, about the origin.	The line $2x + 3y = 4$ intersects the <i>x</i> -axis at <i>A</i> and the <i>y</i> -axis at B. Find the length <i>AB</i> .	Find the second derivative of $y = 3x^4 + 2x^2 - 10x^2 - 7x + 5$	Write down the first 5 terms of the sequence defined by $u_n = \frac{3n+2}{2n}.$ What is the limiting value of $u_n \text{ as } n \to \infty?$
Find the centre and radius of the circle $x^2 - 4x + y^2 + 6y + 4 = 0$		Find the solutions of $3\sin^2(x) + \cos^2(x) + 3\sin(x) - 3 = 0$ in the range $0^\circ \le x \le 360^\circ$	The coefficient of x^2 in the expansion of $(3x + a)^5$ is 720. Find <i>a</i> .	Sketch, showing any intersections the curve $y = 3x^2 + 9x - 3$
A bird flies in a straight line at an angle of elevation 13° from the ground to a branch on a tree. Given that the branch is at a height of 15 m how far away is the tree.	The graph above shows a piece wise function $g(x)$. Define $g(x)$ stating the domain if each part, and also state the range of $g(x)$	Find the equation of the tangent to the circle $x^2 - 6x + y^2 - 4y = 0$ at the point (5,5). Find also where this tangent intersects the <i>x</i> - axis.	Sketch the graphs of $y = \sin(x)$ and $y = \tan(x)$ for $0^{\circ} \le x \le 360^{\circ}$	Find the equation of the line perpendicular to 2y = 3x + 1 which passes through (3,2).
Solve $81^{3x} = 27^{x^2+3}$	Rationalise the denominator of $\frac{2\sqrt{3}}{3-2\sqrt{5}}$	Given that $\begin{pmatrix} 2 & 1 \\ b & 4 \end{pmatrix} \begin{pmatrix} a & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 10 \\ 8 & 16 \end{pmatrix}$ find <i>a</i> and <i>b</i> .	Identify the turning point of the quadratic $y = 2x^2 + 5x - 7$	Find the stationary points of $y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 5$
A triangle has side lengths 4 cm and 5 cm with an angle between these sides of 120° . Find the length of the remaining side.	Find the <i>n</i> th term of the sequence $3,14,29,48,71$	The straight line y = 2x - 10 intersects the circle $(x - 2)^2 + (y + 1)^2 = 25$. Find the points of intersection.	The point $(2,1)$ is transformed by the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ to the point A . This is then transformed to the point B by the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$. Find B .	Factorise, fully, $x^2 - 4x - 9y^2 - 36y - 32$

AGA Level 2 i di thei Mathematics Walmup - i aper i 2022							
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 3$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\sqrt{\frac{52}{9}}$	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4(9x^2 - 4)$	When $n = 5$, $u_n = \frac{17}{10}$. As $n \to \infty$, $u_n \to \frac{3}{2}$.			
By completing the square the centre is $(2, -3)$ and the radius is 3.		Use the identity $\sin^2(x) + \cos^2(x) = 1$ to find $(2\sin(x) - 1)(\sin(x) + 2) = 0$. Hence $x = 30^\circ$ or 150°	a = 2	(-3.303, 0) (-3.303, 0) (0, -3) (0, -3) (0, -3) (-1.5, -9.75) (-1.5, -9.75)			
$x = \frac{20}{\tan(13^\circ)}$ $x = 86.6 \text{m}$	$g(x) = \begin{cases} 2 & -2 \le x \le 1 \\ x+1 & 1 \le x \le 4 \\ 5 & 4 \le x \le 6 \end{cases}$ Range of $g(x)$ is $2 \le g(x) \le 5$	Circle has centre (3,2) and radius $\sqrt{13}$. Equation of tangent at (5,5) is 2x + 3y = 25. The tangent meets the <i>x</i> -axis at (12.5,0).	150 300	-2x - 3y = -12			
x = 1 and $x = 3$	$\frac{-6\sqrt{3}-4\sqrt{5}}{11}$	This leads to two simultaneous equations 2a + 2 = 4 and ba + 8 = 8 which lead to a = 2 and. $b = 0$.	Completing the square we have $y = 2\left(x + \frac{5}{4}\right) - \frac{81}{8}$ so the turning point has coordinate $\left(-\frac{5}{4}, -\frac{81}{8}\right)$	Maximum at $\left(-2, \frac{37}{3}\right)$ and minimum at $\left(3, -\frac{17}{2}\right)$			
$\sqrt{61}$	$2n^2 + 5n - 4$	(2, – 6) and (6,2)	$B = \begin{pmatrix} 6\\ 9 \end{pmatrix}$	Factorising the <i>x</i> and <i>y</i> terms separately we have $(x - 2)^2 - 3(y + 2)^2$. Noticing this is a difference of two squares we obtain (x - 3y - 8)(x + 3y + 4) as the factorised form.			

AQA Level 2 Further Mathematics Warmup - Paper 1 2022