AQA A-Level Mathematics Warmup - Paper 22022

Find the binomial expansion of $\sqrt[3]{8+2 x}$	Find the centre and radius of the circle $x^{2}-4 x+y^{2}+6 y+4=0$	A ball is dropped from a balcony 4.3 m off the ground. How long does it take for the ball to reach the ground?	How do you determine a point of inflection for $f(x)$?	The velocity of a model boat is given by the vector $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$. Find the magnitude and direction fo the velocity.
Define the moment of a force F from a point A	What definition is used in differentiation from first principles?	When is the expansion $(a+b x)^{n}$ where n is a fraction or a negative integer valid?	A box of mass 1 kg is being by a rope inclined at 30° to the rope is 8 N a) Draw a labelled force dia b) Find the acceleration of c) State a modelling assum	pulled across a smooth floor he horizontal. The tension in ram. box. tion made about the box.
Simplify $\log _{10}\left(x^{2}\right)+3 \log _{10}(x)-2 \log _{10}(x)$	A ball is projected upwards at a speed of 5 ms^{-1} at an angle of 25°. Find the vertical and horizontal components of the velocity.	In projectile motion what happens to the horizontal component of the velocity?	What is a convex curve?	The distance travelled by a car, s, in metres is given by $s=3 t^{2}+\frac{3}{2} t^{3}$. Find the speed when $t=2$
		For the velocity time graph to the left: a) Describe the motion shown, identifying all key features. b) For what time interval is the acceleration greatest? And what is it? c) What is the total distance travelled?	Differentiate $y=x^{2}$ from first principles. What is limiting friction?	State Newton's 3 laws of motion. Find the general solution of $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y$

AQA A-Level Mathematics Warmup - Paper 22022 Solutions

$2+\frac{x}{6}-\frac{x^{2}}{72}+\frac{5 x^{3}}{2592}-\cdots$	By completing the square the centre is $(2,-3)$ and the radius is 3 .	$\sqrt{\frac{43}{49}} \mathrm{~s} \approx 0.88 \mathrm{~s}$	For x to be a point of inflection, $f^{\prime \prime}(x)=0$. If in addition $f^{\prime}(x)=0$ the point is a "stationary point of inflection", if not then it is a "non-stationary point of inflection".	$\|\mathbf{v}\|=5$, at an angle 53.1° to the positive \mathbf{i} direction.
The force multiplied by the perpendicular distance from the force's line of action to the point A.	$f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}$	Valid for $\left\|\frac{b x}{a}\right\|<1$ or equivalently $\|x\|<\left\|\frac{a}{b}\right\|$		b) $4 \sqrt{3} \mathrm{~ms}^{-1}$ b) We have modelled the box as a particle.
$3 \log _{10}(x)$	Vertical: $5 \sin (25)$ Horizontal: $5 \cos (25)$	It stays constant.	A curve is convex if any line segment joining two points on the curve stays above the curve.	$30 \mathrm{~ms}^{-1}$
		a) Accelerating between 0 and 5 seconds, still accelerating but at a slower rate between 5 a constant speed between 10 and 20 seconds and then decelerating between 20 and 30 seconds. b) Between 0 and 5 seconds. c) 312.5 units.	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\ & =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\ & =\lim _{h \rightarrow 0} 2 x+h \\ & =2 x \end{aligned}$	NL1: A body will stay at rest, or maintain a constant velocity unless acted upon by a force. NL2. The NL2: The overall resultant force is equal dy mass times the acceleration of a body. L3: When one body exerts a force on a exerts a force of equal magnitude and opposite direction on the first body.
		Limiting friction is when friction is at its maximum. Then $F=\mu R$ where R is the reaction force.	$y=A \mathrm{e}^{\frac{x^{2}}{2}}+C$	

