AQA A-Level Mathematics Warmup - Paper 2 2022

Find the binomial expansion of $\sqrt[3]{8+2x}$	Find the centre and radius of the circle $x^{2} - 4x + y^{2} + 6y + 4 = 0$	A ball is dropped from a balcony 4.3 m off the ground. How long does it take for the ball to reach the ground?	How do you determine a point of inflection for f(x)?	The velocity of a model boat is given by the vector $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$. Find the magnitude and direction fo the velocity.
Define the moment of a force F from a point A	What definition is used in differentiation from first principles?	When is the expansion $(a + bx)^n$ where <i>n</i> is a fraction or a negative integer valid?	A box of mass 1 kg is being pulled across a smooth floor by a rope inclined at 30° to the horizontal. The tension in the rope is 8 N a) Draw a labelled force diagram. b) Find the acceleration of the box. c) State a modelling assumption made about the box.	
Simplify $\log_{10}(x^2) + 3\log_{10}(x) - 2\log_{10}(x)$	A ball is projected upwards at a speed of 5 ms ⁻¹ at an angle of 25°. Find the vertical and horizontal components of the velocity.	In projectile motion what happens to the horizontal component of the velocity?	What is a convex curve?	The distance travelled by a car, <i>s</i> , in metres is given by $s = 3t^2 + \frac{3}{2}t^3$. Find the speed when $t = 2$
Velocity 15		For the velocity time graph to the left: a) Describe the motion shown, identifying all key features. b) For what time interval is the acceleration greatest? And what is it? c) What is the total distance travelled?	Differentiate $y = x^2$ from first principles.	State Newton's 3 laws of motion.
0 5 10	15 20 25 30 Time		What is limiting friction?	Find the general solution of $\frac{dy}{dx} = xy$

AQA A-Level Mathematics Warmup - Paper 2 2022 Solutions

$2 + \frac{x}{6} - \frac{x^2}{72} + \frac{5x^3}{2592} - \cdots$	By completing the square the centre is $(2, -3)$ and the radius is 3.	$\sqrt{\frac{43}{49}}$ s ≈ 0.88 s	For <i>x</i> to be a point of inflection, f''(x) = 0. If in addition f'(x) = 0 the point is a "stationary point of inflection", if not then it is a "non-stationary point of inflection".	$ \mathbf{v} = 5$, at an angle 53.1° to the positive i direction.
The force multiplied by the perpendicular distance from the force's line of action to the point A .	$f'(x) = \lim_{x \to 0} \frac{f(x+h) - f(x)}{h}$	Valid for $\left \frac{bx}{a} \right < 1$ or equivalently $ x < \left \frac{a}{b} \right $	R 30° 1g	b) $4\sqrt{3}$ ms ⁻¹ b) We have modelled the box as a particle.
$3\log_{10}(x)$	Vertical: 5 sin(25) Horizontal: 5 cos(25)	It stays constant.	A curve is convex if any line segment joining two points on the curve stays above the curve.	30 ms ⁻¹
Velocity		a) Accelerating between 0 and 5 seconds, still accelerating but at a slower rate between 5 and 10 seconds. Travelling at a constant speed between 10	$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$ = $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$ = $\lim_{h \to 0} 2x + h$ = $2x$	NL1: A body will stay at rest, or maintain a constant velocity unless acted upon by a force. NL2: The overall resultant force is equal to the mass times the acceleration of a body. NL3: When one body exerts a force on a second body, the second body simultaneously exerts a force of equal magnitude and opposite direction on the first body.
	15 20 25 30 Time	 and 20 seconds and then decelerating between 20 and 30 seconds. b) Between 0 and 5 seconds. c) 312.5 units. 	Limiting friction is when friction is at its maximum. Then $F = \mu R$ where R is the reaction force.	$y = Ae^{\frac{x^2}{2}} + C$