AQA A-Level Mathematics Warmup - Paper 12022

Find, by substitution $\int \frac{\sec ^{2}(x)}{\sqrt{\tan (x)}} \mathrm{d} x$	Find the distance between the points $A(3,5)$ and $B(5,1)$	$(x+2)$ is a factor of $x^{3}+6 x^{2}+b x+6$. Find b.	Find the centre and radius of the circle $x^{2}-4 x+y^{2}+6 y+4=0$	What is the period of the sequence defined by $u_{n}=2+(-1)^{n}$?
Show that $f(x)=\mathrm{e}^{\frac{x}{2}} \cos (x)$ has a root between $x=4$ and $x=6$.	Differentiate $y=\sin \left(3 x^{2}+4 x\right)$	Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $3 x^{2} y+y^{2}=5 x^{2}+8 x$	State the Trapezium rule for approximating the integral $I=\int_{a}^{b} f(x) \mathrm{d} x \text { with } n$ strips.	Sketch $f(x)=(x+1)^{2}(x-1)(x-2)$ and its gradient function.
Express in Cartesian form the curve given parametrically by $x=t-1 \text { and }$ $y=t^{2}+2$	State the three Pythagorean trigonometric identities.	The first three terms of a geometric series are $\sqrt{3}, \sqrt{15}$ and $5 \sqrt{3}$. Why can you not find a sum to infinity for this series?	Find the area between the curve $y=-(x+1)(x-4)(x+3)$ and the x-axis.	Find the equation of the tangent to the curve $y=x \sin (x) \text { at } x=\frac{\pi}{3}$
Sketch the graphs $\begin{aligned} & y=\sin (x) \\ & y=\sin (x)+2 \text { and } \\ & y=2 \sin (x-\pi) \text { on } \end{aligned}$ the same axes.	Find the small angle approximation for $\frac{\cos ^{2}(x) \sin (x)}{\tan (x)}$	State the factor theorem.	Find the area of the sector of a circle of radius 4 cm where the angle subtended at the centre is 120°.	State the NewtonRaphson method.

$2 \sqrt{\tan (x)}+C$	$2 \sqrt{5}$	$b=11$.	By completing the square the centre is $(2,-3)$ and the radius is 3 .	2
$\begin{aligned} & f(4) \approx-4.83 \\ & f(6) \approx 19.29 \end{aligned}$ As there is a sign change and $f(x)$ is continuous, there is a root in the interval $[4,6]$.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(6 x+4) \cos \left(3 x^{2}+4 x\right)$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 x y+10 x+8}{3 x^{2}+2 y}$	$\begin{gathered} I \approx \frac{h}{2}\left[y_{0}+y_{n}+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right] \\ \text { where } h=\frac{b-a}{n} \end{gathered}$	
$\begin{aligned} y & =(x+1)^{2}+2 \\ & =x^{2}+2 x+3 \end{aligned}$	$\begin{aligned} \sin ^{2}(x)+\cos ^{2}(x) & =1 \\ 1+\tan ^{2}(x) & =\sec ^{2}(x) \\ \cot ^{2}(x)+1 & =\operatorname{cosec}^{2}(x) \end{aligned}$	$r=\sqrt{5}>1$ and so the infinite series is not convergent.	$\frac{407}{4}$	$y=\left(\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right) x-\frac{1}{3}\left(\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right)+\frac{\pi}{2 \sqrt{3}}$
	$\frac{x^{4}}{4}-x^{2}+1 \approx-x^{2}+1$	Let $f(x)$ be a polynomial such that $f(c)=0$ for some constant c. Then $(x-c)$ is a factor of $f(x)$. Conversely if $(x-c)$ is a factor of $f(x)$ then $f(c)=0$	Don't forget to change the angle into radians! $\begin{aligned} A & =\frac{1}{2} \times 4^{2} \times \frac{2 \pi}{3} \\ & =\frac{16 \pi}{3} \end{aligned}$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

