Find, by substitution $\int \frac{\sec^2(x)}{\sqrt{\tan(x)}} dx$	Find the distance between the points $A(3,5)$ and $B(5,1)$	(x + 2) is a factor of $x^3 + 6x^2 + bx + 6$. Find <i>b</i> .	Find the centre and radius of the circle $x^2 - 4x + y^2 + 6y + 4 = 0$	What is the period of the sequence defined by $u_n = 2 + (-1)^n$?		
Show that $f(x) = e^{\frac{x}{2}} \cos(x)$ has a root between $x = 4$ and $x = 6$.	Differentiate $y = \sin(3x^2 + 4x)$	Find $\frac{dy}{dx}$ for $3x^2y + y^2 = 5x^2 + 8x.$	State the Trapezium rule for approximating the integral $I = \int_{a}^{b} f(x) dx \text{ with } n$ strips.	Sketch $f(x) = (x + 1)^2(x - 1)(x - 2)$ and its gradient function.		
Express in Cartesian form the curve given parametrically by x = t - 1 and $y = t^2 + 2$	State the three Pythagorean trigonometric identities.	The first three terms of a geometric series are $\sqrt{3}, \sqrt{15}$ and $5\sqrt{3}$. Why can you not find a sum to infinity for this series?	Find the area between the curve y = -(x + 1)(x - 4)(x + 3) and the <i>x</i> -axis.	Find the equation of the tangent to the curve $y = x \sin(x)$ at $x = \frac{\pi}{3}$		
Sketch the graphs $y = \sin(x)$, $y = \sin(x) + 2$ and $y = 2\sin(x - \pi)$ on the same axes.	Find the small angle approximation for $\frac{\cos^2(x)\sin(x)}{\tan(x)}$	State the factor theorem.	Find the area of the sector of a circle of radius 4 cm where the angle subtended at the centre is 120°.	State the Newton- Raphson method.		

AQA A-Level Mathematics Warmup - Paper 1 2022

$2\sqrt{\tan(x)} + C$	$2\sqrt{5}$	<i>b</i> = 11.	By completing the square the centre is $(2, -3)$ and the radius is 3.	2			
$f(4) \approx -4.83$ $f(6) \approx 19.29$ As there is a sign change and $f(x)$ is continuous, there is a root in the interval [4,6].	$\frac{\mathrm{d}y}{\mathrm{d}x} = (6x+4)\cos\left(3x^2+4x\right)$	$\frac{dy}{dx} = \frac{-6xy + 10x + 8}{3x^2 + 2y}$	$I \approx \frac{h}{2} \left[y_0 + y_n + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) \right]$ where $h = \frac{b - a}{n}$				
$y = (x + 1)^{2} + 2$ = x ² + 2x + 3	$sin^{2}(x) + cos^{2}(x) = 1$ $1 + tan^{2}(x) = sec^{2}(x)$ $cot^{2}(x) + 1 = cosec^{2}(x)$	$r = \sqrt{5} > 1$ and so the infinite series is not convergent.	$\frac{407}{4}$	$y = \left(\frac{\sqrt{3}}{2} + \frac{\pi}{6}\right)x - \frac{1}{3}\left(\frac{\sqrt{3}}{2} + \frac{\pi}{6}\right) + \frac{\pi}{2\sqrt{3}}$			
20 8m3 4m3 2m3 m3 7 m3 2m3 4m3 9m3 m	$\frac{x^4}{4} - x^2 + 1 \approx -x^2 + 1$	Let $f(x)$ be a polynomial such that $f(c) = 0$ for some constant c . Then (x - c) is a factor of $f(x)$. Conversely if $(x - c)$ is a factor of $f(x)$ then $f(c) = 0$	Don't forget to change the angle into radians! $A = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3}$ $= \frac{16\pi}{3}$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$			

AQA A-Level Mathematics Warmup - Paper 1 2022