AQA AS-Level Mathematics Warmup - Paper 22022

In a histogram how do you work out the frequency density?	How many solutions has the equation $\cos (3 \theta)=\frac{1}{2}$ got in the range $0^{\circ} \leq \theta \leq 360^{\circ}$	For $X \sim B(12,0.4)$ find $P(X \leq 2)$	State the cosine rule for the triangle $A B C$	Rationalise the denominator for $\frac{5}{\sqrt{3}+\sqrt{2}}$
Find the area between the curve $y=(x-1)(x+1)(x+3)$ and the x-axis.	What is the null hypothesis in an hypothesis test?	$\begin{aligned} & \text { Find } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \text { for } \\ & y=3 x^{3}+4 x^{2}+2 x \end{aligned}$	Given that $(x+2)$ is a factor of $p(x)=6 x^{3}+23 x^{2}+25 x+6$ fully factorise $p(x)$.	The decay in temperature of a cup of tea is modelled by a function of the form $A \mathrm{e}^{-0.02 t}$. Given that the initial temperature of the tea (after adding milk) is 83° C , what is the value of A ?
$\int_{2}^{\text {Find }} 3 x^{5}+5 x+4 \mathrm{~d} x$	Find the values of k for which the quadratic $x^{2}+(k+1) x+3 k$ has a repeated root.	Using your calculator find the mean of the following list of numbers: $4,7,12,20,13,15,2,3,1$	State the Pythagorean trigonometric identity.	Find the solutions of $3 \sin ^{2}(x)+\cos ^{2}(x)+3 \sin (x)-3=0$ in the range $0^{\circ} \leq x \leq 360^{\circ}$
Let X be a random variable such that" $P(X=x)=\frac{x}{15}, \quad x=1,2,3,4,5$ Find $P(X>3)$	Define opportuntity sampling.	Given that $P=n A^{b}$, express $\ln (P)$ in terms of $\ln (A)$	What are the conditions for the binomial distribution to be a suitable model?	$\begin{aligned} & \text { Simplify } \\ & \log _{10}\left(x^{2}\right)+3 \log _{10}(x)-2 \log _{10}(x) \end{aligned}$

AQA AS-Level Mathematics Warmup - Paper 22022

Divide the frequency by the width of the class interval.	6	0.0834	$a^{2}=b^{2}+c^{2}-2 b c \cos (A)$ where a is the side opposite A.	$5 \sqrt{3}-5 \sqrt{2}$
$A=4+\|-4\|=8$	The null hypothesis is the hypothesis you must believe to be true in the absence of any data from a sample.	$18 x+8$	$(x+2)(2 x+3)(3 x+1)$	83
$\frac{363}{2}$	$\begin{gathered} 5-2 \sqrt{6} \text { and } \\ 5+2 \sqrt{6} \end{gathered}$	$\bar{x}=\frac{77}{9}$	$\sin ^{2}(x)+\cos ^{2}(x)=1$	Use the identity $\begin{aligned} & \sin ^{2}(x)+\cos ^{2}(x)=1 \text { to } \\ & \text { find } \\ & (2 \sin (x)-1)(\sin (x)+2)=0 \\ & \text {. Hence } x=30^{\circ} \text { or } 150^{\circ} \end{aligned}$
$\frac{9}{15}$	In opportunity sampling individuals are chosen to be part of a sample as opportunity arises. Interviewing passers by on a street is one example.	$\ln (P)=\ln (n)+b \ln (A)$	- There are a fixed number, n, of trials. - Each trial is independent. - Two possible outcomes to each trial - success or failure - Fixed probably of success	$3 \log _{10}(x)$

